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Abstract 

This work proposes boosting the multiplication performance for convolutional neural network (CNN) 

accelerators using hybrid multiplier which controls various precision approximate multipliers. Previously, 

utilizing approximate multipliers for CNN accelerators was proposed to enhance the power, speed, and area 

at a cost of a tolerable drop in the accuracy. Low precision approximate multipliers can achieve massive 

performance gains; however, utilizing them is not feasible due to the large accuracy loss they cause. To 

maximize the multiplication performance gains while minimizing the accuracy loss, this article proposes 

hybrid parallel adder-based multiplier to improve the speed of multiplication compared to the existing 

technique. In this technique the partial products of, two consecutive bits (multiplicands), are added 

simultaneously with the help of a hybrid adder (Hancarlson, Weinberger and Ling adder). The proposed 

architecture is synthesized and simulated using Xilinx ISE 12.1 with various FPGA boards.  

 

Introduction 

 Convolution neural networks are developing rapidly in recent years. Due to the outstanding 

performance in image recognition, CNN are used widely in image classification. Moreover, since its 

great success in image recognition, CNN are studied and applied to many other fields of artificial 

intelligence, such as speech recognition, game play, etc. 

 Increasing the depth of CNN by increasing the number of layers of CNN is a common and 

effective method to improve the accuracy of image recognition. For instance, in ILSVRC 2012, the 

champion work, one kind of CNN model namely AlexNet, achieved the top-5 accuracy of 84.7% in 

the image classification task, and the CNN model has 5 convolutional layers and 3 fully connected 

layers [2]. The ResNet, which won the first place in ILSVRC 2015 and achieved 96.43% accuracy 

exceeding human-level accuracy, consists of 152 layers [3]. Although making CNN model deeper 

can improve the performance, the computing process of CNN involves an enormous number of 

computation and data. It brings more pressure to the computing hardware. Traditional CPU became 

a limitation to CNN. Lacking of parallel computing, using CPU for CNN computing result in poor 

computing performance and high-power consumption. It is necessary to find a better hardware to 

replace CPU for CNN computing. Therefore, more and more hardware are designed and used for 

CNN computing, such as FPGA designs, GPU designs, and ASIC designs. These designs aim to 

accelerate the computing of CNN, improve the computing performance and reduce the energy 
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consumption. Designing and optimizing a specific CNN hardware accelerator became one of 

popular topics. 

 Convolutional neural network (CNN) is one type of Deep Neural Networks. The first CNN 

model namely LeNet-5 is proposed in 1998 and this model is used in handwriting digit recognition. 

However, due to the enumerated number of computing in training, CNN has been silence for some 

time. Until 2012, a breakthrough of CNN occurred. A group from University of Toronto used a deep 

neural network, namely AlexNet, won the first place in image classification in ILSVRC 2012, and 

its top-5 error rate achieved 15.3%, compared to the second place which achieved 26.2%, and also 

dropped the error rate by 10% approximately]. They improve the algorithm of CNN model in some 

aspects, such as deepening the model, using ReLu as the activation function, etc. And they train their 

CNN model with 2 GPU. Their effort resulted a great leap in Deep Neural Network. Since then, 

CNN developed rapidly. In 2015, the top-5 error rate of ImageNet champion work namely ResNet 

achieved 96.43% accuracy and exceeded human-level accuracy]. In their work, they continued to 

deepen the CNN model to 152 layers. In the latest ILSVRC 2017, the champion work top-5 error 

achieved 2.251%. For the rapid development, CNN is making a great impact on many application 

areas, such as image and video recognition, speech recognition, game play, etc. 

 Processing System (PS) mainly consists of CPU and off-chip memory. Due to the enormous 

amount of input data and weights, it is impossible to store data and weights in on-chip memory. 

Therefore, usually data and weights are stored in the off-chip memory like DDR3 at the beginning. 

CPU can configure the control module of accelerator, so that adjust the accelerator to accommodate 

different scale of CONV layers. In addition, CPU can realize some simple operation such as the 

SoftMax function of CNN model. We know that the operation of CONV layers usually constitute 

more than 90% of the total CNN operations. Accelerating the operations except the CONV layers 

have little performance improvement. Therefore, we can use CPU to handle the operations except 

the operation CONV layers such as Softmax function. 

 Programmable Logic (PL) actually is a FPGA chip and we can program the PL to meet our 

requirement. PL consists of several parts including processing element (PE) array, control module 

and on-chip buffer. PE array is consisting of a certain number of PE. PEs are the computation unit 

for convolution and usually the number of PEs decide the computational performance of CNN 

accelerator. Data can be interchanged between PEs so that data can be reused without accessing 

buffer. On-chip buffer is used to cache data and weights for PEs and store the results. Since data and 

weights of CONV layers are reused repeatedly, buffering and reusing data can reduce the off-chip 

memory access Control module receives configuration information from PS, and control the 

computational process and dataflow of PE array. 

 The whole working process of CNN accelerator of an implementation can be divided into three 

steps. First, before system working, all data and weights are stored in the off-chip memory. Next, 

CPU starts to configure the control module of accelerator and then control module control the on-

chip buffer to fetch data from off-chip memory. So that PE array can read data and weights from on-



 

Volume 9         Issue 1               June 2023  www.irjes.psyec.edu.in 

 

 

International Research Journal of Engineering Sciences                    136 
 

chip buffer and start computation. Finally, PE array finishes all computation and returns the results 

to off-chip memory so that CPU can read the results. 

 

Literature Survey 

 M. N. Islam, et al proposes first VLSI-architecture of a hardware accelerator for such 

GoogLeNet CNN models and a versatile CNN accelerator-architecture that is capable of performing 

three different types of convolution tasks with approximately equal hardware-efficiencies.  

 Y. -C. Chung, et al use FFT-based convolution in frequency domain to reduce computational 

complexity in CNNs. The properties of conjugate symmetry and down-sampling is adopted to 

further reduce complexity. By eliminating filter weights in CNNs that can save computational 

requirement but lead to accuracy loss. The simulation result reveals that eliminating filter weights in 

frequency domain is more accurate than that in time domain.  

 X. Lian, et al adopted n optimized block-floating-point (BFP) arithmetic accelerator for efficient 

inference of deep neural networks in this paper. The feature maps and model parameters are 

represented in 16-bit and 8-bit formats, respectively, in the off-chip memory, which can reduce 

memory and off-chip bandwidth requirements by 50% and 75% compared to the 32-bit FP 

counterpart.  

 C. Zhou, et al proposed energy-efficient low-latency 3D-CNN accelerator. Temporal locality 

and small differential value dropout are used to increase the sparsity of activation. Furthermore, to 

fully utilize the sparsity of weight and activation, a full zero-skipping convolutional 

microarchitecture is proposed. A hierarchical load-balancing scheme is also introduced to improve 

resource utilization.  

 S. M. Shivanandamurthy et al present ATRIA, a novel bit-parallel stochastic arithmetic based 

In-DRAM Accelerator for energy-efficient and high-speed inference of CNNs. ATRIA employs 

light-weight modifications in DRAM cell arrays to implement bit-parallel stochastic arithmetic-

based acceleration of multiply-accumulate (MAC) operations inside DRAM.  

 L. Xuan, et al propose an energy-efficient, digital signal processor (DSP)-less DSC accelerator. 

We design a dataflow to process the three sub-layers of the DSC layer with an end-to-end evaluation 

to reduce by 80.5% the repeated memory accesses from the layer-by-layer dataflow.  

 K. Khalil et al proposes the design and hardware implementation of a novel pooling method 

absolute average deviation (AAD) for CNN accelerator. AAD utilizes the spatial locality of pixels 

using vertical and horizontal deviations to achieve higher accuracy, lower area, and lower power 

consumption than mixed pooling without increasing the computational complexity.  

 S. Kala, et al propose a unified architecture named UniWiG, where both Winograd-based 

convolution and GEMM can be accelerated using the same set of processing elements. This 

approach leads to efficient utilization of FPGA hardware resources while computing all layers in the 

CNN. The proposed architecture shows performance improvement in the range 

of 1.4× to 4.02× with only 13% additional FPGA resources with respect to the baseline GEMM-

based architecture.  
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 Y. Chou et al proposes a novel placement framework for CNN accelerator units, which extracts 

kernels from the circuit and insert kernel-based regions to guide placement and minimize routing 

congestion. Experimental results show that our framework effectively reduces global routing 

congestion without wirelength degradation, significantly outperforming leading commercial tools. 

 J. Xu et al., presents a memory-efficient CNN accelerator design for resource-constrained 

devices in Internet of Things (IoT) and autonomous systems. A segmented logarithmic (SegLog) 

quantization method is exploited to mitigate the on-chip memory and bandwidth requirements, thus 

accommodating more processing elements (PEs) in a given chip area to organize a reconfigurable 

multi-cluster architecture. The evaluation results show that SegLog quantization can 

achieve 6.4× model compression with less than 2.5% accuracy loss on various CNNs.  

 

Proposed System 

 Hancarlson Adder (HCA) Hancarlson adder is designed using the principle of parallel prefix 

addition. It is the combination of Kogge Stone and Brent Kung adder. Kogge Stone adder provides 

less delay and Brent Kung adder provides less area. Hence, it has high speed, less power 

consumption and low hardware components than other adders. Hancarlson adder consists of pre- and 

post-prefix stages. In the pre-processing stage, the following expressions are used to determine the 

generate (Gi) and propagate (Pi) signals.  

 

 Generate = Ai & Bi         (1)  

 

 Propagate = Ai ⊕ Bi       (2)  

 

Furthermore, the k to I th bits are extended to the blocks using the following generate and propagate 

expressions.  

 

 Gi = Gi−1 + (Gi−2&Pi−1)        (3)  

 

 Pi = Pi−1&Pi−2         (4) 

 

 The approximate output sum bit is only needed in the post-processing stage. The above subset 

expressions are used to determine the final output carry bits. The final sum is obtained as follows.  

Si = Pi ∧Gi−1:0 (5) The architecture of Hancarlson adder is displayed in Figure 2. 
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Figure 1 Han-Carlson Adder 

 

Ling Adder  

 In CSELA, RCA stage is changed to Ling adder, as Ling adder provides less delay and 

minimum chip size when compared to CLA. It is called Ling CSELA [6]. The following expressions 

are used to calculate the generate and propagate bitwise signals Generate (Gi) = Ai&Bi (6) 

Propagate(Pi) = Ai + Bi (7) The architecture of Modified LLCSELA is displayed in Figure 2 

 

 

Figure 2 Structure for Modified Linear Ling CSELA 

 

Weinberger-Based CSELA (WCSELA)  

 The concept of Weinberger recurrence algorithm is used to compute the carry for improving the 

delay of adder. The BK adder is replaced by Weinberger adder to create WCSELA [6]. The 

architecture of WCSELA is displayed  
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Weinberger-Based CSELA (WCSELA)  

 The concept of Weinberger recurrence algorithm is used to compute the carry for improving the 

delay of adder. The BK adder is replaced by Weinberger adder to create WCSELA [6]. The 

architecture of WCSELA is displayed 

 

 

Figure 3 Architecture of Weinberger CSELA (WCSELA) 

 

Proposed Multiplier 

 Hybrid Adder The adder is created using more than one logic circuit. This kind of adder is 

known as the hybrid-adder. The structure of the hybrid-adder is displayed in Figure 4. In this 

structure, A and B are the input signals in Module I. The Module-II and Module-III are intermediate 

blocks of adder. Different types of adder techniques are used in the intermediate module for 

producing sum and carry outputs. The two types of design structures are followed in the hybrid 

adder design. (1) Homogeneous: Combining the similar type of more than one adder is called 

Homogeneous design. (2) Heterogeneous: Combining the different type of more than one adder is 

called Heterogeneous design 

 The proposed idea is to form a hybrid structure, using the above two techniques, to bring the 

high performance and low cost (chip size) products. The major constraint of the above adders is the 

speed of operation, hence concentrating on the delay (critical path of output) of an adder. A new 

version of CSELA is proposed using a hybrid technology. 

 The 8-bit hybrid technology-based CSELA is displayed in Figure 4. This adder consists of two 

stages each with 4 bits. The Hancarlson adder and Weinberger adder are used in stage1 and stage 2, 

respectively. 
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Figure 4 Structure of the Proposed 8-Bit Hybrid Adder 

Hybrid Multiplier  

 The architecture of the proposed multiplier is displayed in Figure .5. This architecture is a 8∗8 

multiplier. In this structure c0 to c7 are the partial products of multiplicands. The partial products are 

generated using a series of AND gates. Partial product generation is a first process of multiplication. 

Partial products are obtained by performing the logical AND operation with every bit of multiplier 

by every bit of multiplicand. For example, a 8∗8 Multiplier has multiplier A (A0 to A7) and 

multiplicand B (B0 to B7) each with 8 bits. In partial product generation, the first step involves 

performing logical AND operation of Multiplicand B0(LSB) with every bit of Multiplier A and the 

results are stored in C0(8 bit), mathematically represented as c0[0] = B0 AND A0,c0[1] = B0 AND 

A1 ... , c0[7] = B0 AND A7. Similarly, Multiplicand B1 with very bit of Multiplier A and results are 

stored in C1(8 bit) and so on. The architecture of partial product generation is shown in Figure.  

 

 

Figure 5 Architecture of the Proposed Multiplier 

 

 The proposed hybrid multiplier consists of 3 stages. In each stage, different-sized hybrid adders 

are used. Namely, an 8- bit CSELA (combination of Hancarlson and Weinberger adder each with 4 

bit) is used in the first stage (4 numbers of 8-bit CSELA), 12-bit CSELA (combination of 

Hancarlson, Weinberger and ling adder each with 4 bits) is used in the second stage (2 numbers of 

12-bit CSELA) and a 16-bit CSELA (combination of Hancarlson, Weinberger adder and Hancarlson 

with BEC each with 4 bit) is used in the third stage (1 number of 16-bit CSELA). The first stage 

consists of four numbers of 8-bit CSELAs. In this stage, the partial products of each two consecutive 

bits of multiplier are added simultaneously. The output of each adder is passed to the next stage 

adder input. The second stage consists of two numbers of 12-bit adders. In this stage, the first stage 

outputs are added simultaneously and the results are passed to the final stage 16-bit CSELA. This 

16-bit adder output is a final product of the 8∗8 multiplier. 
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Simulation Results 

 

 

Figure 6 Product Output 

 

 

Figure 7 Final Output 

 

XILINX Synthesis Report 

Existing System 

 

Figure 8 Existing System 

 

Proposed System 

 

 

Figure 9 Proposed System 

 

 The proposed has been simulated and the synthesis report can be obtained by using Xilinx ISE 

12.1i. The various parameters used for computing existing and proposed systems with Spartan-3 

processor are given in the table  
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Table 1 The Various Parameters used for Computing Existing and Proposed Systems 

 SLICE LUT TIME 

EXISTING 428 822 39.8 

PROPOSED 395 759 27.7 

 

Performance Analysis 

 The Figure given below is shown that there is a considerable reduction in time and area based on 

the implementation results which have been done by using Spartan-3 processor. The proposed 

algorithm significantly reduces area consumption when compared to the existing system. 
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Figure 10 Performance Analysis 

 

Conclusion 

 In this project a hybrid adder-based Multiplier (CSELA) is proposed for CNN accelerators using 

Hancarlson adder, ling adder, Weinberger adder and BEC circuit. To reduce the delay and area of 

the multiplier, the final product of multiplier is calculated by each two consecutive multiplicand bits 

of partial products added simultaneously using different-sized hybrid adders. The simulation is 

carried out in Xilinx ISE 12.1 using Verilog HDL. The results shows that speed of the proposed 

multiplier in Spartan 3 FPGA implementation is improved when compared to other multipliers.  
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